	VIVEK TUTORIALS	DATE: 20-02-19
	X (English) (Chapter Two)	TIME: 1 Hr
	Mathematics Part - II-(2)	MARKS: 30
	SEAT NO:	
O 1 Malkinla Chair	- Orașeti area	2

Q.1 Multiple Choice Questions

1 Find the diagonal of a square whose side is 10 cm.
a.
$$\frac{10}{\sqrt{2}}$$
 b. $10\sqrt{2}$ c. 100 d. 200

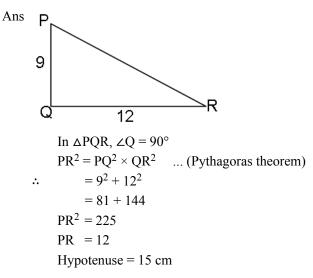
Ans Option b

2 Out of the dates given below which date constitutes a Pythagorean triplet? a. 15/08/17 b. 16/08/16 c. 3/5/17 d. 4/9/15

Ans Option a

Q.2 Solve the following

1 In the right angled triangle, sides making right angle are 9 cm and 12 cm. Find the length of the hypotenuse



2 In Δ LMN, l = 5, m = 13, n = 12. State whether Δ LMN is a right angled triangle or not.

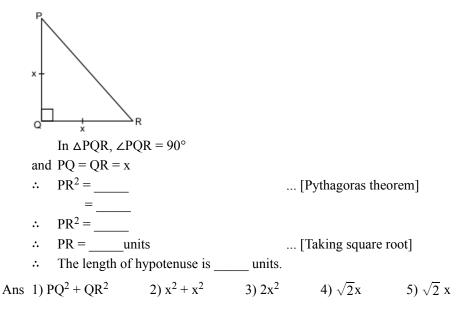
Ans l = 5, m = 13, n = 12

```
l^2 = 25, m = 169, n^2 = 144
```

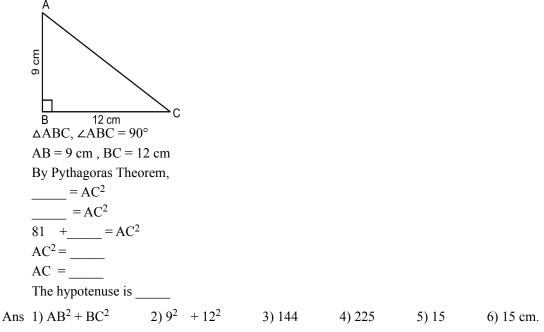
$$\therefore$$
 169 = 144 + 25

- $\therefore \quad m^2 = l^2 + n^2$
- \therefore By Converse of Pythagoras theorem \triangle LMN is a right angled triangle.
- Q.3 Attempt the following
 - 1 A side of an isosceles right angled triangle is x. Find its hypotenuse.

4



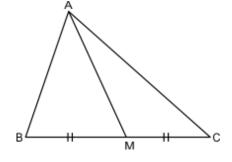
2 Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.



Q.4

- Solve the following
 - 1 In \triangle ABC, point M is the midpoint of side BC. If, AB² + AC² = 290 cm², AM = 8, find BC

6



- Ans In $\triangle ABC$, seg AM is a median
 - \therefore AB² + AC² = 2AM² + 2BM² ... [Apollonius theorem]
 - $\therefore \quad 290 = 2 \times 8^2 + 2BM^2$
 - $\therefore \quad 290 = 2 \times 64 + 2BM^2$
 - $\therefore 290 = 128 + 2BM^2$
 - $\therefore 2BM^2 = 290 128$

$$\therefore 2BM^{2} = 162$$

$$\therefore BM^{2} = \frac{162}{2}$$

$$\therefore BM^{2} = 81$$

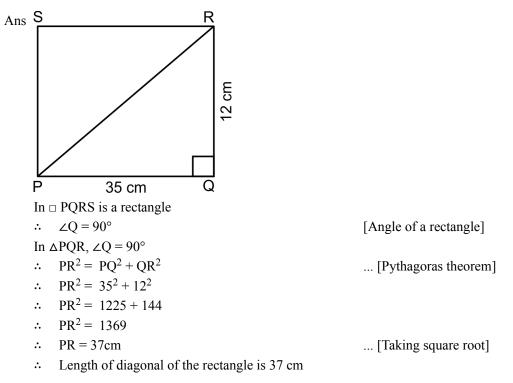
$$\therefore BM = 9 \text{ cm} \qquad \dots [Taking square root]$$

$$Now BC = 2 BM \qquad \dots [M \text{ is midpoint of side BC}]$$

$$= 2 \times 9$$

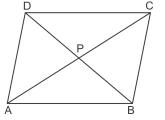
$$\therefore BC = 18 \text{ cm}$$

2 Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.



Q.5 Answer the following

1 \Box ABCD is a parallelogram. Side AB = diagonal BD. Prove that BD² + 2BC² = AC².



Ans

:.

Proof: The diagonals of a parallelogram bisect each other.

$$\therefore \quad AP = PC = \frac{1}{2} AC \quad and \quad BP = PD = \frac{1}{2} BD \qquad \dots (1)$$

In $\triangle ABC$, BP is the median.

 $\therefore \text{ by Apollonius' theorem,} \\ AB^2 + BC^2 = 2BP^2 + 2AP^2 \qquad \dots (2) \\ AP^2 = \left(\frac{1}{2}AC\right)^2 \qquad \dots [From (1)] \\ \therefore AP^2 = \frac{AC^2}{4} \qquad \therefore 2AP^2 = \frac{AC^2}{2} \qquad \dots (3) \\ BP^2 = \left(\frac{1}{2}BD\right)^2 \qquad \dots [From (1)]$

... (4)

$$BP^{2} = \frac{BD^{2}}{4} \qquad \therefore \qquad 2BP^{2} = \frac{BD^{2}}{2}$$

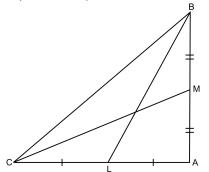
From (2), (3) and (4),
$$AB^{2} + BC^{2} = \frac{AC^{2}}{2} + \frac{BD^{2}}{2}$$

$$2AB^{2} + 2BC^{2} = AC^{2} + BD^{2} \qquad \qquad \dots \text{ (Multiplying both the sides by 2)}$$

$$2BD^{2} + 2BC^{2} = AC^{2} + BD^{2} \qquad \qquad \dots \text{ (Given : } AB = BD)$$

$$BD^{2} + 2BC^{2} = AC^{2}$$

2 In $\triangle ABC$, $\angle BAC = 90^\circ$, seg BL and seg CM are medians of $\triangle ABC$. Then prove that: 4 (BL² + CM²) = 5 BC²



Ans Proof:

:.

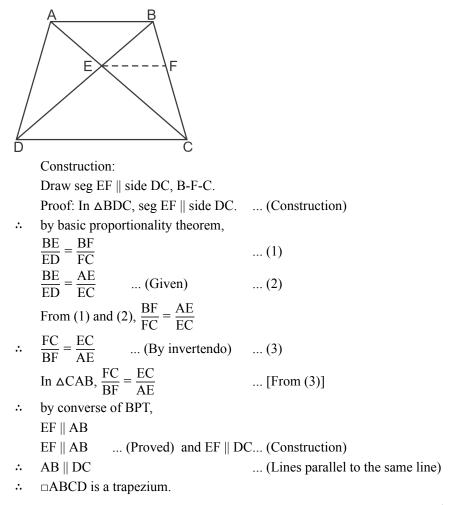
:. :.

15 11001.		
i. In $\triangle ABC$, $\angle BAC = 90^{\circ}$	[given]	
$\therefore BC^2 = AB^2 + AC^2$	[Pythagoras theorem]	
ii. In $\triangle BAL$, $\angle BAL = 90^{\circ}$	[given, C-L-A]	
$\therefore BL^2 = AB^2 + AL^2$	[Pythagoras theorem]	
$= AB^2 + \left(\frac{1}{2}AC\right)^2$	[L is the midpoint of seg	
$\therefore BL^2 = AB^2 + \frac{1}{4}AC^2$		
$\therefore 4 \text{ BL}^2 = 4 \text{ AB}^2 + \text{AC}^2$	[Multiplying both sides by 4]	
iii. In \triangle MAC, \angle MAC = 90°	[given, B-M-A]	
$\therefore CM^2 = AM^2 + AC^2$	[Pythagoras theorem]	
$= \left(\frac{1}{2} \text{ AB}\right)^2 + \text{AC}^2$	[M is the midpoint of seg A]	
$\therefore CM^2 = \frac{1}{4}AM^2 + AC^2$		
$\therefore 4 \text{ CM}^2 = \text{AB}^2 + 4\text{AC}^2$	[Multiplying both sides by 4]	
iv. $4 BL^2 + 4 CM^2 = 4 AB^2 + AC^2 + AB^2 + 4AC^2$	[Adding (2), (3)	
$= 5 \text{ AB}^2 + 5\text{AC}^2$		
$= 5 (AB^2 + AC^2)$		
$\therefore 4 (BL^2 + CM^2) = 5 BC^2$	[From (1)]	

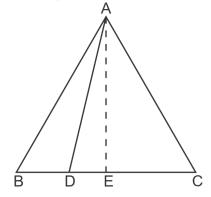
Q.6 Answer the following

¹ In \square ABCD, diagonals AC and BD intersect at the point E. If $\frac{AE}{EC} = \frac{BE}{ED}$, then prove that \square ABCD is a trapezium, using basic proportionality theorem.

Ans



2 In an equilateral triangle ABC, the side BC is trisected at D. Prove that $9 \text{ AD}^2 = 7\text{AB}^2$.



Construction : Draw seg AE \perp side BC. Ans Proof : In $\triangle ABE$, $\angle AEB = 90^{\circ}$... (Construction) $\angle ABE = 60^{\circ}$ (Angle of an equilateral triangle) the remaining $\angle BAE = 30^{\circ}$. *:*. $\triangle ABE$ is a 30° - 60° - 90° triangle. $\therefore \quad AE = \frac{\sqrt{3}}{2}AB$... (Side opposite to 60°) ... (1) and BE = $\frac{1}{2}$ AB ... (Side opposite to 30°) \therefore BE = $\frac{1}{2}$ BC ... (Side of an equilateral triangle) ... (2) DE = BE - BD... (B-D-E) $=\frac{1}{2}$ BC $-\frac{1}{3}$ BC ... [From (2) and D is the point of trisection of side BC]

$$= \frac{3BC - 2BC}{6} = \frac{BC}{6}$$

$$\therefore DE = \frac{AB}{6} \qquad ... (BC = AB = AC) \qquad ... (3)$$

In right angled $\triangle ADE$, by Pythagoras' theorem,
 $AD^2 = AE^2 + DE^2$

$$= \left(\frac{\sqrt{3}}{2}AB\right)^{2} + \left(\frac{AB}{6}\right)^{2} \qquad \dots [From (1) and (3)]$$
$$= \frac{3}{4}AB^{2} + \frac{1}{36}AB^{2}$$
$$\therefore AD^{2} = \frac{27AB^{2} + AB^{2}}{36}$$
$$= \frac{28AB^{2}}{36}$$
$$\therefore AD^{2} = \frac{7AB^{2}}{9}$$
$$\therefore 9AD^{2} = 7AB^{2}$$